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Synopsis 
The pape r  con t inues  the  sys t emat i c  inves t iga t ion  u n d e r t a k e n  earlier  ~) of a class of 

perturbations of continuous energy spectra producing, in addition to scattering and 
reaction processes, self-energy and cloud effects which affect at all times the motion of 
wave packets and which are of the type occurring in the quantum theory of interacting 
fields. The main result presented here is the explicit determination of the perturbed 
stationary states. The formula obtained is used to express the motion of wave packets 
and to connect it with its asymptotic properties for large times as established earlier. 
A special example is treated as illustration of the general method and a crude prelimina- 
ry discussion is given of the aspect under which the renormalization program will 
present itself in the present formalism 

1. Introduct ion.  In a previous paper 1), to be referred to hereafter as I, we 
have introduced and analyzed a class of quantum-mechanical perturbations 
of continuous energy spectra characterized by the most important  formal 
properties through which the interaction energies encountered in the quantum 
theory of fields differ from the interactions studied in conventional collision 
theory (theory of scattering and reaction processes, S-matrix theory). We 
have established in I that  the perturbations there considered give rise, in line 
with the physical situation expected to occur for interacting fields and in 
contrast  with the case of ordinary collisions, not only to scattering and re- 
action processes but also to permanent  effects modifying the motion of arbi- 
t rary  wave packets at all times. These effects consist of energy corrections in 
the continuous spectrum (self-energy effects in the terminology of field 
theory) and of what may be called cloud effects, i.e. the persistent admixture 
to each unperturbed stat ionary state of a "cloud" of other unperturbed 
s tat ionary states, even in the asymptotic motion of wave packets long before 
or after all scattering and reaction processes have taken place. These self- 
energy and cloud effects have been derived to general order in the pertur- 
bation by a method more suitable for this purpose than the usual methods 
of field theory,  They are contained in the perturbed energy E(~) and the 
"asymptot ical ly  s ta t ionary"  state 1~)o, associated in I to each unperturbed 
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stationary state I~). Their defining equations are (I.4.1.)*) for E(o~),--E =E(~)  
is the root of this equation --, and (I.5.12) for the state ]~)os. A further result 
derived in I is the S-matrix formulae (I.6.4), (I.6.5.) expressing the con- 
nection between the asymptotic motions of wave packets before and after all 
transient (i.e. scattering and reaction) processes have taken place. 

The main object of the present paper is to derive for the perturbations 
considered in I an explicit expression to general order for the perturbed 
stationary states. This is achieved in the next section. As an application of 
this result we then consider the exact expression for the time evolution of a 
wave packet under the perturbation and derive from it the asymptotic 
motion for large times, thus obtaining in another way the results established 
in I without knowledge of the explicit solution of the Schrtidinger equation. 
Such is the contents of Section 3. Two more or less complementary examples 
of the general formalism are then considered. The first one (Section 4), only 
mentioned very briefly, is the case of perturbations producing transient 
effects only, no self-energy or cloud effects; the general equations then 
reduce to the well known results of collision theory. The second example 
(,Section 5), dealt with in more detail, is a type of perturbation producing non- 
vanishing self-energy and cloud effects, but sufficiently simple to be calcul- 
lated in closed form, and thus particularly well suited as illustration of the 
developments forming the main contribution of I and of the present paper. 
Finally, in the last section, some indications without aim at completeness are 
given on the aspect taken in the present formalism by the well known re- 
normalization program of quantum field theory, and a few comparative 
remarks are made on a very recent paper by D e W i t t 9) devoted to a 
subject closely related to ours. 

The definitions, notations and results of I will be used throughout. In this 
paper as in I we adopt a notation adapted to the assumption that  all 
quantum numbers defining the unperturbed states [~) are continuous. This 
excludes the consideration of polarization indices, spin indices, etc. The 
extension of the formalism to include such discrete quantum numbers would 
present no essential difficulty. The main difference with the case considered 
here and in I would be that  the diagonal part  of a product VA1V . . .  A n V  
(V is the perturbation and A1 . . . .  A ,  are operators diagonal in the l~>- 
representation) should be defined by (I.2.4) with the 0-function referring to 
the continuous quantum numbers alone, F1 being consequently a finite 
matrix in the polarization indices. Similarly the quantities ~(~) and D~(~) 
are finite matrices which can be diagonalized for each l, a step necessary for 
the definition of the perturbed energies E(~) and of the asymptotically 
stationary states I~)a, as well as for the definition of the true stationary 
states by the method of the next section. Except  for this short remark we 

*) By Equat ion  (I.4.1) we mean Equat ion (4.1) of paper I. 
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leave out of consideration as we did in I the complications connecSed with 
polarization indices. Another point which is assumed here as it was in I is 
the convergence of all expansions in powers of the perturbation which are 
used  in the course of our derivations. This assumption excludes for example 
the possibility of bound states. 

2. The  perturbed stationar.y states. The resolvent operator Rz extensively 
used in I is also a convenient tool for determining the stationary states of the 
perturbed hamiltonian H + )tV. From its definition (I.3.1) one obtains for 
the spectral resolution of H + )tV the equation 

where 

H + 2V = f_+~ E P~ dE, 

PE = (:?ai) -1 lim~_~0 (RE+~ -- R~_~,~), ~ > 0. (2.1, 

The identity (1.3.17) gives on the other hand 

• RE+i, I - -  RE_~, = 2~7i RE±i~ R~: i , i  (2.2) 

Here and in subsequent equations upper (lower) signs must be taken 
together. The limiting value of the right hand side of (2.2) for y ~ 0 is de- 
termined by  means of the following identities, which are quite easy to 
establish. If the matrix element (c¢[B[0¢') considered as function of x and ,-' 
has no 6(a -- ,¢') -- singularity, one has 

lim,o 0 ~? D~±,, s B Dl,:~i~ = 0. (2.3) 

If on the contrary B is diagonal in the [¢¢)-representation this equation is 
replaced by  *) 

lim~_~ 0 ~ D E ± i ,  t BD~:Fi,~ = ~ N B  ~(H -- E -- )tZKE), ~ > 0, (2.4) 

where N is the diagonal operator defined in terms of (I.5.8) by  

N ],¢> = N(c¢)]~>. 

By separating in (2.2) the diagonal parts occurring in the product of t w o  
resolvents and by  taking (2.3) and (2.4) into account one obtains 

lim ~ RE±~ RE~i, = ~ lim RE±i, D~I. ;,, ~(H -- E -- ~t~K~) DE~:~,-1 R~: ; , ,  (2.5) 

or, with the familiar notation A~±,o = lim,~_~0 AE±,, for ~ > 0, 

PE = [l + Z~=~ {(-- ;t DE±,0V)"},d]. 

8 (g  --  E -- )t~K~).[1 + Z~,= 1 {(-- 2VDE~:,o)"'},,~ ]. (2.6) 

*) The last  equatioti of I and equat ion (I.6.13) contain misprints  whose correction is found 
hereunder in (2.4) and (2.5). 
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We now define 

IoO+ = IN(e)]½.[1 + XT= ~ {(-- 2D;,:l,)~:,o V)"},,a] [o0 (2.7) 

and denote by ±(~l the hermitian conjugate state vector of le)±. 
An easy transformation of (2.6) gives 

PE = f ]e)_~ hIE -- E(e)] de +(e I (2.8) 

and consequently for the spectral resolution 

H 3- 2V = f]e>+ E(e) de +<~[ (2.9) 

As will now be established, these relations readily imply that  the states 
]e>+ (the states [e>_) form a complete orthonormal set of eigenstates of the 
hamiltonian H 3- 2V; in formulae 

(H 3- 2V)le>.~ = E(~)1~>±, ~<e -- - ~') (2.10) 

where as always upper (lower) signs have to be taken together. The proof runs 
as follows. A well known property of spectral resolutions is expressed by the 
identity 

P~. PE" = 6(E -- E') PE. 

Multiplying this equation on the left by the operator 

N -'-! [1 3- Z~ {(-- ,,) - i  2DK~:ioV) S,,a] 

and on the right by 

E: + xF { ( -  "" - :  2VDs¢:Fio) j ,a] N-~" 

one obtains by means of (2.8) 

f lab alE -- E(~)] do~ +(e I~'>i de' alE' -- E(a')] (~'i = 

= 6(E -- E') f lab ale - E(~)] d~ <el. 

This is further reduced through multiplication on the  left by (~il and on 
t 

the right by lei>: 

aEE -- E(e~)] 6[E' -- E(~;)] ±<e~ [e;>± -- 6(E -- E') bEE -- E(~,)] 6(~ -- ~'~). 
t 

Integration over all values of E and E' for fixed ~ and e, and application of 
(2.9) gives then (2.10). 

3. The asymptotic motion o/wave packets. The two complete sets of eigen- 
states obtained in the foregoing section provide us with two representations 

~(t) = f  le>~ exp [ -  it E(c~)I c+(e) d~ (3.1) 

for an arbitrary solution of the time-dependent Schr6dinger equation 

i aglat = (n  + 2V)9. 
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We have put t~ -- 1. The present section gives the connection between these 
representations and the results of I (Sections 5 and 6) on the asymptotic 
motion of wave packets. The following equations will be established 

limt_,m ~ [~0(t)-- f [~>,~ exp [-- it E(~)] c+(a) da] = 0 
limt_. + .  [~0(t)-- f [a>,., exp [-- it E(~)] d~ <aiSle'> c~ (~') d~'] = 0 (3.2) 
lim,_~_~ [~0(1)--f [~>,, exp.[-- it E(=)] d~ <<S*I~-'> c ( ~ ' )  d a ' ] =  0 

The limits are taken with the meaning that  a state vector approaches zero 
when its norm (length) does. We note from (3.2) that  ]~>+ corresp.onds to the 
situation where all scattering and reaction events produced by V contribute 
only to the outgoing wave components of the stationary state, while in Ia>_ 
they contribute to the incoming waves alone• 

If two vectors q~(t), ~o(t) have norms approaching one for t -+ 4- 0% the 
equation 

lim,_~+~ [q~(t) -- w(t)] = 0 

is equivalent to 

limt_.±oo <~(t) [ ~0(t)> = 1. 

To establish (3,2) we are thus led to calculate for t --> i oo the limiting 
value of a scalar product <~0(t) [ q~(t)} with ~0(t) of the form (3.1) and ~(t) of the 
form 

~(t) = f ]~>,,s exp [-- it E(0¢)] y(0~) d~ (3.3) 

We carry out this calculation considering the upper sign in (3.1). The case 
of the lower sign is completely analogous. According to the respective 
definitions (I.5.12) and (2.7) of I~>,,.~ and ]0c}+ we have 

<yJ(t) [ q~(t)> - - f  [N(o~) N(~')] ½ exp [it (E(a) --  E(~'))] 

<a.[ C1 + ~,,=1 {(-- 2 V Y ~  DE¢.I~_,o ) },d]' 

• [1 4- ",,'=1 {(--  2Dl,:m'l+,0 V) },,d] [~'> 7"(~) c+(~') da d~'. (3.4) 

In the product Y,, DE{~I±i o the choice of sign is irrelevant (I, Section 4). The 
limiting value of (3.4) for t -+ q- oo originates from the terms in the integrand 
which are singular at E(a) = E(='). They are of two types. Firstly the di- 
agonal part of the whole operator comprised in the matrix element gives 

<m I { . . .  },, I='> = [N(m)]  - I  ~(m - -  m') (3.5) 

as was established in I, Equations (I.5.18) and following. Its contribution to 
(3.4) is time-independent. Secondly there are the further diagonal parts to be 
separated in the matrix element. Since Y ,  D~,l,,li,o is non singular, the only 
singularities which can occur originate from terms where 

_ D n [1 + z '_l {(-   vYo 
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appears as a whole within the  diagonal part .  One obtains by  summing over 
all separat ions satisfying this condition the  expression 

,o O " (el {[1 + X,=l  {(-- 2 V Y ,  E(.)~.,o) ),~]. 

[1 + ZT=x {(-- ~Dz,:(,,)+,0 V)"'}.a]}a DE(..)+,o 

[ -  a v  + a 2 { v  V}.oJ = 

- -  ,t IN(e) ] - '  DECa.)+,o(e ) <**] V --  2 { V  REI,.)+,oV},,a re'>. (3.6) 

The singular factor  is 

D E ( . ,  , + , o ( e )  = [ e ( e )  - -  E ( ~ ' ) - -  i 0  - -  )l 2 ~ F ( . , ) + , o ( e ) ]  - 1  = 

= [E(~) - -  E(~') - -  i0] -1 N(e) + regular  terms,  (3.7) 

where N(e) occurs th rough (1.5.8.). I ts  contr ibut ion for large t imes follows 
from 

lim exp [it (E(z~) - -  E(~'))] -_=- ~2~i ~[E(~) - -  E(c,.')] for t --,'- + oo, (3.8) 
E ~ )  - -  E(e')  --  i0 tO for t -+ ~ oo. 

L, a ther ing the results (3.5) to (3.8) one finds 

limt+_o. <~o(t) ] q0(t)> = f7*(o~) c+(e) d~, (3.9) 

and, in view of the expression (1.6.5) of the  S-matr ix ,  

lim,_~+= <~o(t) J g(t)> - - f T * ( e )  c+(e) d~ - -  2~i  , t f [N(~)  N(~')] -~ 

a ~E(0~) - -  E(~t')] <otlV - -  2 {VRz( ,)+,  o V} ,  a lot'> 7"(o~) c+(od) de de'  = 

= fT* (e )  do( <~lSl~'> d~' c+(a'). (3.10) 

One would find similarly by  taking the lower sign in (3.1) 

lim,_._oo <~v(t) [ q~(t)> = fT*(~)  de <~[S*[e'> d0d c_(e'), (3.11) 

lim~'_. +oo <~o(t) [ ~p(t)> = fT*(a)  c_ (a) d~. (3.12) 

We m a y  incidental ly r emark  tha t  comparison of (3.9) and (3.11) for 
a rb i t ra ry  7(a) gives 

c+(e) =.f<=l s* Ix'> de' (3.13) 
whereas (3.1 O) and (3.12) provide the inverse relation 

c_(e) = f<ct I S]e') d~' c+(e'). (3.14) 

Since the function c+(,t) or the function c_(a) may be arbitrarily chosen the 
two last equat ions imply the un i ta r i ty  of the  S-matr ix ,  a p roper ty  which was 
not  explicit ly established in I. 

I t  is now an easy 'mat ter  to complete  the  proof of Equat ions  (3.2). One 
assumes 9(t) normalized to one and one successively selects for ~o(t) the four 
vectors of form (3.3) appearing in (3.2). One then  verifies tha t  the  norm of 
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~0(t) always approaches one for t - +  + oo; this follows readily frqm the 
asymptotic orthonormality of the states Ix)as (last equation of Section 5 in I) 
and from the unitary character of the S-matrix. One finally establishes by 
means of Equations (3.9) to (3.12) that  (~v(t) [ 9(t)> has the limit one for 
infinite times. 

We shall end this section with a remark on the asymptotically stationary 
states [x>~,. The definition of these states in I, Equation (I.5.12), may  have 
appeared rather arbitrary and found only a justification a posteriori in the 
fact that  they  provide a complete and consistent description for the asymp- 
totic motion of wave packets. Now however new light is thrown on this 
definition by its close analogy with the expression (2.7) of the true stationary 
states Ix)±. The difference lies in the occurrence of the projection operator 
YQ in front of each factor V, i.e. in a restriction of the set of states Ix'> 
coupled to the unperturbed state [x). The restriction is to those states which 
play an effective role in the eigenvalue of diagonal parts for Ix). They are 
also the states which contribute to the properties of wave packets 

= f Ix>~_ dx c(x) 

even for the most incoherent distribution of the phases of the amplitudes 
c(x), and they may therefore intuitively be pictured as the states Ix') be- 
longing to the "cloud" persistently at tached to ]x) by virtue of the pertur- 
bation. It  is an interesting and satisfactory result of the general theory that  
the restriction mentioned above results in the same asymptotically stationary 
states Ix)as and thus in the same persistent cloud effects whether it is applied 
to the state ]x)+ with its .outgoing nature of all scattered waves, or to the 
state [x)_ with incoming scattered waves. We have here to do with a very 
significant fact which clarifies the physical meaning of the formal properties 
described in Section 4 of I. 

4. Perturbations without persistent effects. It  is obvious that  the foregoing 
results apply in particular to the familiar case of perturbations which do not 
produce persistent effects because mathematically they do not give rise to 
any diagonal parts of the type defined in I, Section 2. These are the pertur- 
bations causing scattering and reaction processes only. For them one simply 
has to put in the results of I and of the foregoing sections 

5 ,  = 0,  E ( x )  = , (x ) ,  N ( x )  = 1, Ix>o, = Ix>, 

and to drop brackets of the type {.. .},d. Although this case has been re- 
peatedly studied in detail 3) it may  be worth noting that  the method we used 
in the foregoing sections, when applied to it, gives an especially brief deriva- 
tion of the perturbed stationary states and of the S-matrix. Our method is 
therefore of some interest also for ordinary collision theory. 
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5. A simple type o~ perturbation wi~h persistent e//ects. The type of pertur- 
bation considered in the present section as illustration of the general forma- 
lism is amenable to an exact t rea tment  in consequence of its very special 
mathematical  structure. It  has often been used on this ground as simplified 
model for various physical problems, in particular for resonance scattering 
and metastable states (theory of the line-width) 4), and more recently by 
L e e 6) for mass and coupling constant  renormalization in quan tum field 
theory *). We present this type of per turbat ion in a slightly more general 
form than usual. The generalization, which is mathematical ly  trivial, 
amounts  physically to the inclusion of recoil effects. 

The unper turbed system of hamil tonian H is defined as having two conti- 
nuous families of stat ionary states. The states of the first one, characterized 
b y  the presence of one particle (the V-particle of Lee), are labelled by its 
momen tum q and are denoted by [q). The states of the second family,  
denoted by [q, k), have two distinct particles present (the N- and 0-particles 
of Lee) of momenta  q and k. The unper turbed energy is defined by 

H ]q> -~ e(q) [q), n [q, k> -- ~(q, k) [q, k). (5.1} 

One usually supposes t(q, k) to be the sum of two one-particle energies, but  
this is irrelevant for the mathemat ical  handling of the perturbat ion problem. 
The unper turbed stat ionary states ]q), Iq, k), which correspond to the states 
]~) of the general formalism, form two continuous families of dimensions 3 
and 6 respectively. Orthonormali ty  is expressed by 

(q [q'> = ~(q - -  q'), <q, k tq' )  = 0, } (5.2} 
(q, k [ q ' ,  k'> = ~(q -- q') ~(k -- k'). 

"The perturbat ion V is defined by its matr ix elements in the unper turbed 
representation : 

<q ' iV I q, k) -- <q, k lV I q')* = v(q, k) ~(q + k -- q'), [ (5.3} 
<qlVI  q'> = <q, k I VI q', k'> = 0 / 

It  allows for emission of a 0-particle by a V-particle which at the same t ime 
transforms into a N-particle and for the inverse process, with conservation of 
momentum.  

We now show.that  the results of I and of the present paper, when applied 
to this v e r y  special type of perturbation,  give immediately the exact 
diagonalization of the hamiltonian H + ~tV and the exact expression of the  
S-matrix. One first notices that  irreducible diagonal parts occur only for 
products VA V containing two factors V and tha t  they have the value 

{VAV},a Iq'> = Iq '>fA(q,  k) Iv(q, k)l~ ~(q + k -- q') dq dk, 
{VX V},a Iq, k > = 0. 

A (q, k) is the eigenvalue for the state ]q, k) of the operator A assumed to be 

*) I t  is not  clear whether  Lee realized the very  close resemblance of his field-theoretical model 
with the model introduced by Dirac for resonance scattering. 
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diagonal in the Iq>, Iq, k>-representation. Consequently the operator Q~ 
implicitly given by (I.3.13) can be calculated exactly and is found to have 
the following eigenvalues for ]q'> and lq, k>: 

~ ( q ' )  = f [e(q, k ) - -  lj . Iv(q, k ) l ' . ~ ( q  + k - -  q') dq dk, (5.4) 
C~,(q, k) = 0. 

The expression of the operators KE and JE follows immediately by applica- 
t ion of the definition (I. 3.20). The per turbed energy values E(a) of the gene- 
ral theory are here E(q, k) - :  s(q, k) and the root E = E(q') of the numerical 

equation e(q') -- E -- 2" KE(q') = 0. (5.5) 

This root is supposed to be unique. The physically important  condition 
Jm-) (e) = 0, introduced in I, Section 4, to characterize the perturbations 
which give rise to self-energy and cloud effects as opposed to those producing 
dissipative effects, takes here the form 

v(q, k) = 0 whenever q + k = q', e(q, k) = E(q'). (5.6) 

We assume it to be satisfied. I t  is instrumental  in making our perturbat ion a 
meaningful model of field-theoretical interaction. When it is not satisfied one 
obtains a model for resonance scattering and metastable states 4). The last 
important  point to notice is that  the non-diagonal part  of any product  
V A  1 V . . .  A n V  (A1 . . . .  An diagonal in the Iq>, Iq, k>-representation) with 
more than  two factors V (n ~> 2) vanishes. I t  is for this reason tha t  our 
general formulae give in the case at hand a closed expression for the 
per turbed stat ionary states and for the S-matrix. The stat ionary states are 
found from (2.7) 

v*(q,  k) 6 ( q + k - - q ' )  dq dk l ,  Iq'>+ = ]q'>- = [N(q') ]  ½ I]q'> - -  2 f l q ,  k>. t(q,  k) - -  E(q' )  

Iq, k>+ : Iq, k> -- 2v(q, k) [t(q + k) -- s(q, k) q= iO -- 
__ ~2 ~,(q,k)4-/0 (q + k)] -1 (5.7) 

~lq+k>_~,/iq,,k,>v*(q',k')~(q' + k ' - - q - - k )  ] 
t(q',  k') - -  e(q, k) =1= i0  dq'  dk '  , 

with 

[N(q ' ) ] - l=  1 + 2 2 f  [e(q, k)--E(q ' ) ]  -~ Iv(q, k)l" ~(q + k -- q') dq dk. (5.8) 

The asymptotically stat ionary states (1.5:12) simply reduce to 

Iq'>a, = Iq'>+ = Iq'>-, Iq, k>as  = Iq, k>. (5.9) 

Finally, for the S-matrix, the formula (I.6.5) gives 

<q ISI q'> = ~(q - -  q'), <q, k ISI q'> = <q' ISI q, k> ---- 0, 

<q, k ISI q', k'> = 8(q - -  q') 8 ( k - - k ' ) +  2~zi2 2 8[e(q, k) - -  e(q', k')] (5.10) 
6(q + k -- q'  -- k') v*(q, k) v(q', k') [e(q + k) -- e(q, k) - -  

- -  29 ~,(a,k)+,0(q + k)] -1. 
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The perturbation problem is thus completely solved in terms of the root 
E(q') of the numerical equation (5.5). I t  is of course impossible to calculate 
this root explicitly for arbitrary forms of the functions e(q'), e(q, k) and v(q, k). 

6. Preliminar~ remarks on the renormalization problem. Since our general 
formalism will find its most important applications in quantum field theory 
one has to inquire as to the aspect it will give to the renormalization program 
which played such a central role in the successes of quantum electrodynamicse). 
No systematic s tudy of this problem will be a t tempted here. We shall content 
ourselves with a few remarks, stressing one side of the problem O n which our 
approach may  eventually turn out to be more promising than the con- 
ventional ones. 

The physical basis of the renormalization method in field theory lies in the 
fact that  the interaction V inescapably affects all observations one can make 
on the field particles, so that  we have no experimental access to what the 
theory calls the unperturbed system (hamiltonian H). Still, all the theory has 
to build upon is an hamiltonian H + ;tV composed of the term H belonging 
to this unobservable unperturbed system and a perturbation term V acting 
upon it. This remarkable situation *) has been met with by  the remark that  
in view of the permanent presence of the interaction the constants, mass and 
charge, occurring in the two terms H and ;tV of the total  hamiltonian are 
not necessarily equal to the corresponding measured quantities, so that  a 
redefinition of them is required if one wants to use their measured values in 
comparing any theoretical prediction with experiment. Exploitation of this 
idea of mass and charge renormalization turned out to be possible and, 
beyond providing a method to circumvent mathematical  divergence diffi- 
culties, it gave in quantum electrodynamics a brilliant explanation of new 
experimental facts. The formalism, either in the presentation of D y s o n ~) 
or in that  of K/ i  11 ~ n 8), and as far as electrodynamics is concerned, makes 
essential use of three so-ca/led renormalization constants, one for the mass, 
one for the charge and a third one of more purely formal significance, the 
wave function renormalization constant. They are respectively called 6m, 
Z 8 and Zz by  Dyson, K, L and N by  K~ill~n. Dyson introduced an additional 
constant Z1, but  conjectured its identity with Z2. The correctness of this 
conjecture was established by  W a r d 9). All three constants ~m, Z 8, Z~ 
closely correspond to simple elements of the formalism developped in I and 
in the present paper. Z 3 and Zz are simply special cases of the coefficient N(~) 
introduced by  (I.5.8) ; they are obtained by  taking for ix> a one-photon state 
or a one-electron state respectively. The mass renormalization 6m appears 
in our non-covariant formalism as an energy r'enormalization when the un- 
perturbed energy ~(~) is eliminated in terms of the perturbed energy E(c¢). 

*) I t  is a n  i n t e r e s t i n g  a n d  u n s o l v e d  p r o b l e m  to  u n d e r s t a n d  for  w h i c h  p h y s i c a l  r e a s o n s  the  h i s to r i ca l  

d c v e l o p m e n t  has  been  such  as to  c o n f r o n t  us w i th  th i s  s i t u a t i o n .  



PERTURBATION OF CONTINUOUS SPECTRA~ II 3 5 3  

One thus concludes (in contradiction with the too pessimistic stategnent at 
the end of I) that  the renormalization program in its conventional form could 
be carried out on the basis of our equations as well as in the more convention- 
al presentations. 

There is however one aspect of the conventional renormalization scheme 
which is unsatisfactory on physical grounds and for the improvement of 
which our approach may  offer new possibilities. While the conventional 
method duly avoids use of the unrenormalized values of mass and charge, 
it is not able to avoid completely the use of the unperturbed states Ix), 
although they are just as inaccessible to observation as the unr~normalized 
mass and charge values. It  is true that  in view of the so-called wave function 
renormalization I~) enters the conventional formalism only through the com- 
bination [N(~)]~ ]~>, but  despite its mathematical usefulness this combina- 
tion has the drawback of corresponding to the same unobservable physical 
state as ]~) itself. Physically such states are "bare" particle states, whereas a 
consistent application of the renormalization idea would exclusivel3T allow 
consideration of "dressed" particles, i.e. of particles surrounded by  the 
clouds which the interaction permanently maintains around each of them. 
We now remark that it has been one of the main aims of I to give an explicit 
description of such cloud effects; this description is contained in the equation 
for the asymptotic stationary states I~)as, Equation (I.5.12). The states I~)a, 
occur as monochromatic components in the asymptotic motion of wave 
packets and they are thus observable, just as the plane wave states of a 
Schr~dinger particle are observable even when an external potential is 
present in a limited region of space and produces ordinary scattering. 

The asymptotically stationary states ]~)a8 are the states which must be 
chosen instead of I~) or [N(,c)] ½ Ist) as basic representation for a more 
consistent development of the renormalization program, and the results of I 
and of the present paper, by  the explicit at tention they pay to the asymp- 
totically stationary states, are likely to provide a more convenient starting 
point for this development than the conventional formulations of field 
theory. Here we can only mention this new standpoint of which we hope to 
work out the consequences elsewhere. We may however already remark that 
under this point of view the divergence difficulties will appear at least partly 
in a rather different form than in the formalisms of Dyson and K~illdn. The 
choice of l~>a8 as basic representation is very likely to remove some of the 
divergencies occurring in the conventional formulation, because it avoids 
consideration of Z v The divergencies here concerned are those originating 
from the fact that  in a theory without cut-off the expansion of ]~>~s in the 
unperturbed states ],t'> cannot be expected to exist. The general situation in 
this respect will probably turn out to be analogous to what was established 
previously 10) for a neutral scalar field interacting with a static point source. 
The states l~)~s will probably span a separable Hilbert space S different from 
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the separable Hilbert space S O spanned by the unperturbed states I~>, and 
one must expect the true stationary states I~>~ to be contained in S rather 
than in So. For the understanding of these various remarks it may  be good 
to have in mind that  in field theory, for one-particle states, the [~t>.~ must be 
identical with the true stationary states ]~t)+ (themselves independent of the 
double sign). For many-particle states on the contrary [a¢)., should be 
essentially a product wave function of one-particle state vectors while the 
true stationary states [¢t>+ will be much more involved since they contain 
all scattering and reaction effects. 

Before closing these general and quite tentative considerations we have 
to mention a very recent paper by D e W i t t ~) with an aim similar to 
ours, namely to extend conventional scattering theory to perturbations pro- 
ducing self-energy effects. Whereas the previous work in this direction, due 
to P i r e n n e  and taken over by G e l l - M a n n  and G o l d b e r g e r Z l ) ,  
payed attention to the energy shifts only, the paper of De Witt  goes much 
further and introduces in addition a coefficient of "state vector renormaliza- 
tion", which is essentially our coefficient N(c¢). There is however no explicit 
discussion of the cloud effects modifying the motion of wave packets even for 
asymptotic times and manifesting themselves in our formalism through the 
fact that  1~).8 is not identical with [N(~)] t [~>, nor is mention made of the 
fact that  the perturbation must satisfy special conditions (see I, in particular 
Section 4) in order for the conclusions of the paper to be valid. Still these 
conditions are very important,  because for example they make  all the 
difference between the behaviour of electrons in interaction with the photon 
field and the completely different (dissipative) behaviour of conduction 
electrons of a metal in interaction with the phonon field {field of elastic 
vibrations). 
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